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The first-arrival quasi-P wave travel-time field in an anisotropic elastic solid solves
a first-order nonlinear partial differential equation, the qP eikonal equation, which is
a stationary Hamilton–Jacobi equation. The solution of theparaxialquasi-P eikonal
equation, an evolution Hamilton–Jacobi equation in depth, gives the first-arrival
travel time along downward propagating rays. We devise nonlinear numerical algo-
rithms to compute the paraxial Hamiltonian for quasi-P wave propagation in general
anisotropic media. A second-order essentially nonoscillatory (ENO) Runge–Kutta
scheme solves this paraxial eikonal equation with a point source as an initial condition
in O(N) floating point operations, whereN is the number of grid points. Numerical
experiments using 2-D transversely isotropic models with inclined symmetry axes
demonstrate the accuracy of the algorithms.c© 2001 Academic Press

Key Words:Hamilton–Jacobi; viscosity solution; paraxial eikonal solvers; aniso-
tropic travel time; weighted essentially nonoscillatory scheme (WENO).

1. INTRODUCTION

Travel-time computation plays a central role in many seismic data processing meth-
ods, such as Kirchhoff depth migration and tomographic velocity analysis. Since seismic
wave propagation is anisotropic in many sedimentary rocks, maximal imaging resolution
requires that travel-time computation honor anisotropy whenever it seriously affects data
kinematics [6, 33, 48]. Among the travel times for various waves in anisotropic media,
quasi-compressional (“quasi-P” or “qP”) wave travel times are considered most important
[47, 48].

Based on the asymptotic methods for wave equations and geometrical optics [4, 19], the
travel times satisfy so-called eikonal equations, a class of Hamilton–Jacobi equations. The
eikonal equation can be solved by the method of characteristics [13], which constructs
the characteristic curves called “rays.” The methods based on the characteristic equations
are called “ray-tracing methods” [5, 32, 44], and they work for bothisotropicandanisotropic
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solids. But ray-tracing methods have some drawbacks. The nonuniform distribution of
travel-time data from ray-tracing methods gives rise to cumbersome and expensive in-
terpolations for application in seismic imaging. Therefore, many researchers appeal to
finite-difference methods to solve the eikonal equation directly on regular Cartesian grids.

Finite-difference eikonal solvers compute the approximate first-arrival times directly on a
prespecified grid, involve rather simple data structures, and are easy to code efficiently [21,
38, 40–43, 49, 50]. However, the methods cited describe only finite-difference travel-time
algorithms for isotropic solids. Extension of these methods to anisotropic wave propaga-
tion is not entirely straightforward. Qin and Schuster [39] and Eaton [11] extended the
expanding-wavefront scheme developed by Qinet al. [38] to the anisotropic medium, but
their extensions work only for 2-D cases and have first-order accuracy only.

The finite-difference eikonal solvers cited above depend on the fact that for isotropic
media the ray velocity vector, i.e., thegroup velocity, has the same direction as the travel-
time gradient, i.e., thephase velocity, so that we can use the travel-time gradient as a
reliable indicator of energy flow in extrapolating the travel-time field. However, this is no
longer true for anisotropic media [10]. In [36], the authors established a reliable indicator
of qP ray velocity direction by formulating a relation between the group velocity direction
and the phase velocity direction; furthermore, they introduced a paraxial eikonal equation
for quasi-P wave travel times, which is a Hamilton–Jacobi equation in evolution form.
The goal of the current paper is to sketch theoretical formulations and present complete
implementation details as well as illustrative applications of finite-difference methods for
travel times of first-arriving qP waves in heterogeneous anisotropic solids.

The mathematical foundation of the finite-difference approach to travel-time computation
comes from Lions’ [27] results pertaining to isotropic media: The first-arrival travel time is
a particular generalized solution of the eikonal equation—the so-called viscosity solution—
which is computable by finite-difference approximation [8].

The central hypothesis of this paper is that the first-arrival qP travel time is also a stable
generalized solution and therefore computable by suitable finite-difference schemes. Also
by analogy with the isotropic case, we expect so-called upwind schemes to be particularly
successful in solving the paraxial eikonal equation with a point source as an initial con-
dition [49]. Dellinger and Symes [9, 10] investigated this possibility but did not give full
details of a workable algorithm. This paper applies a family of algorithms of the essentially
nonoscillatory (ENO) type [30, 31] and weighted ENO (WENO) schemes [17, 28] to a
depth-evolution (“paraxial”) form of the eikonal equation. The computed solution gives an
accurate approximate time at every point of a Cartesian grid, which is connected to the
source by a first-arriving ray whose velocity vector makes less than a prescribed angle with
the vertical. A similar approach has proven quite successful for isotropic travel-time (and
amplitude) computation for use in prestack modeling, migration, and inversion [12, 34, 46].
We expect similar applications for the algorithm presented here. There are other newly de-
veloped high-resolution schemes for Hamilton–Jacobi equations, such as central-difference
schemes [24, 26], discontinuous Galerkin schemes [1, 15], and finite-volume schemes [22];
we plan to test these schemes on the eikonal equations in the seismic exploration setting in
the near future. For examples of capturing multivalued travel times and caustics by solving
Hamilton–Jacobi equations, see [2, 3].

We first summarize the eikonal equation for the quasi-P wave, which is the fastest propa-
gating body wave; see [34, 36] for details. For down-going qP waves, the eikonal equation
can be transformed to an evolution equation in depth, which we call the paraxial eikonal
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equation. Definition of the paraxial eikonal depends on the relation of the aperture limita-
tion, i.e., the indicator of the energy flow, defined in terms of the ray velocity vector and the
travel-time gradient. However, due to the complexity of wave propagation in anisotropic
solids, it is difficult to find an explicit form of the paraxial Hamiltonian. Therefore we
have devised some numerical algorithms for computing the paraxial Hamiltonian. Since
the theoretical results proved in [34, 36] are constructive, the design of the algorithms ba-
sically follows those constructions. A by-product of designing these algorithms is one that
initializes the travel time in finite-difference schemes. Once the paraxial Hamiltonian is in
place, we can use upwind finite-difference schemes to solve the paraxial eikonal equation.
We use the ENO–Godunov family of finite-difference schemes [30, 31] to build qP eikonal
solvers with arbitrary orders of accuracy, in two or three dimensions. Two-dimensional
transversely isotropic examples illustrate the accuracy of the ENO/WENO schemes as well
as the effect of the paraxial (aperture-limiting) assumption. In the Appendix, we present a
new derivation of the first-order Godunov scheme which sheds light on how the upwind
scheme works on the paraxial eikonal equation with a point source.

2. THE PARAXIAL EIKONAL EQUATION FOR QP WAVES

In a seismic exploration setting where velocity structures have mild lateral heterogeneity,
most reflected wave energy propagates down to the target, then up to the surface. That is,
the energy in such a wave field propagates along down-going rays: thex3 (“z”) component
of the ray velocity vector remains positive from source to target. The travel time along such
down-going rays increases with depth and should be the solution of an evolution system
in depth. This evolution system is the so-called paraxial eikonal equation for anisotropic
media, which has been introduced by Qian and Symes [36].

High-frequency approximation to the elastic wave equation leads to the Christoffel equa-
tion [29, p. 84],

∑
k

(∑
i,l

ai jkl pi pl − δ jk

)
Uk = 0, (1)

in which ai jkl are the components of the elastic tensor divided by density,Uk is the dis-
placement vector for a particular asymptotic phase;p = ∇τ is the slowness vector;τ is
the travel time or phase of the mode, andδ jk is the Kronecker delta. Note that all these
quantities depend on the spatial coordinate vectorx = (x1, x2, x3), though in this and some
of the following displays this dependence has been suppressed for the sake of clarity. This
equation has nontrivial solutionsUk only when

det

(∑
i,l

ai jkl pi pl − δ jk

)
= 0. (2)

Equation (2) is a sextic polynomial equation and characterizes the slowness surface which
consists of three sheets corresponding to three wave modes. The three wave modes are
quasi-P, quasi-SV, and quasi-SH, respectively [29]; see Fig. 1a.

The quasi-P slowness surface is strictly convex by the following argument [29, p. 92].
The slowness surface defined by Eq. (2) is sextic and consists of three sheets corresponding
to three different waves. If the inner detached slowness sheet related to quasi-P waves is not
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FIG. 1. The slowness surface for typical anisotropic media. (a) A sextic surface of three slowness sheets.
(b) A quartic surface of two slowness sheets.
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wholly strictly convex, a straight line could intersect the inner sheet at four or more points
and yet make at least four further intersections with the remaining sheets; but any straight
line must intersect the slowness surface at only six points, real or imaginary, because the
slowness surface is sextic. By using the convexity of a quasi-P slowness surface, Qian and
Symes [36] first introduced a functionH to pick out the part of a quasi-P slowness surface
which corresponds to the down-going rays and then modified the functionH to obtain a
paraxial HamiltonianH1, which is defined in the whole horizontal slowness space.

For convenience, we summarize the main results of [36] in the notation used in this paper;
see also [34]. Assuming that the qP slowness surface is

S(x, p) = 1, (3)

then

• For eachx and horizontal slowness vector (p1, p2), because of the convexity of the
slowness surface, there are at most two choices ofp3 for whichp = (p1, p2, p3) solves the
slowness surface equation (3).
• When two distinct solutions exist, only one satisfies (see Fig. 2)

dx3

dt
= ∂S(x, p)

∂p3
(x, p) > 0,

which corresponds to the down-going rays.
• The above choice definesp3 as a function ofx, p1, p2,

p3 = H(x, p1, p2), (4)

whereH is a concave Hamiltonian;

FIG. 2. The p3 components of outward normals at the two intersections on the convex slowness surface have
opposite signs.
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• Parametrize the horizontal variables (p1, p2) by polar coordinates, (p1, p2) =
(p′ cosφ, p′ sinφ), wherep′ =

√
p2

1 + p2
2. For each planar angleφ, the family of planes

with the outward normal (cosφ, sinφ, 0) is tangent to the quasi-P slowness surface at
exactly one point

(p1(φ), p2(φ), p3(φ)) = (p′max(φ) cosφ, p′max(φ) sinφ, p3(φ)), (5)

wherep′max=
√

p2
1(φ)+ p2

2(φ) (see Fig. 2).
• Choosing the paraxial parameter 0< 1 < 1, define functionH1 as

H1(p1, p2) =
{

H(p1, p2), if p′ ≤ (1−1)p′max(φ);
H((1−1)p′max(φ) cosφ, (1−1)p′max(φ) sinφ), else

(6)

hereH1 remains a concave Hamiltonian.
• Theparaxial eikonal equationis

∂τ

∂x3
= H1

(
x,
∂τ

∂x1
,
∂τ

∂x2

)
. (7)

Because the largest eigenvalue of the Christoffel matrix
∑

i,l ai jkl pi pl is simple [14,
p. 95], which corresponds to the quasi-P wave mode, it depends smoothly on the slowness
vectorp and the elastic tensor. Therefore, the above paraxial HamiltonianH1 is continuous.
The concavity of the HamiltonianH follows from its definition because it is based on a
function defined by the graph corresponding to the down-going part of the slowness surface;
see [34] for a rigorous proof.

The paraxial parameter1 is used to limit the slowness vector, which in turn imposes
an implicit restriction on the group velocity vector thanks to the strict convexity of the
quasi-P slowness surface [34]. Because the mapping from the slowness vector to the group
velocity vector is explicit, the above construction leads to an efficient algorithm and the
resultant Hamiltonian has a built-in reliable indicator of the group velocity direction. In
[20], the local convexity of wavefronts in transversely isotropic media is used to extrapolate
the travel-time field. However, the framework presented here can be applied to arbitrary
anisotropic media to obtain the quasi-P travel-time field.

In some special cases, we can find explicit forms forH1, such as in isotropic media and
transversely isotropic media with vertical symmetry axes (VTI); for examples, see [36]. In
general, since the related eigenvalue problem has no closed-form solution, it is difficult to
obtain an explicit form forH1.

3. COMPUTING THE PARAXIAL HAMILTONIAN H∆

The slowness surface equation (2) is a sextic polynomial equation inpi (i = 1, 2, 3),
which characterizes three wave modes; that is, the slowness surface is sextic and consists of
three sheets (see Fig. 1). The inner sheet is convex and corresponds to the quasi-P wave mode.
By introducing the planar polar coordinates, we have transformed this sextic polynomial
equation into a sextic polynomial equation inp′ and p3 for each planar angleφ; hence,
we now have a two-dimensional problem. In the following development of algorithms,
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we concentrate on the numerical construction of a paraxial quasi-P Hamiltonian for two-
dimensional general anisotropic media.

Suppose that the two-dimensional slowness surface is given by

F(p1, p3) = 0, (8)

where F is a sextic or quartic polynomial inp1 and p3, respectively. The sextic case
corresponds to three linked wave modes, namely, quasi-P and two other wave modes; see
Fig. 1a. The quartic case corresponds to two coupled wave modes, namely, quasi-P and one
transverse wave mode; see Fig. 1b. Specifically, in this section we assume thatF is a sextic
polynomial in p1 and p3; the quartic case can be treated similarly.

For arbitraryp∗1, there are four possibilities for the rootsp3 of the sextic polynomial
equationF(p∗1, p3) = 0: (1) no real roots at all; (2) two real roots; (3) four real roots; and
(4) six real roots. We are especially interested in case (4) since this means that among the six
real roots there are two rootspossiblycorresponding to the quasi-P wave. Because the quasi-
P slowness surface, denotedS, is convex and separated from and nested inside two other
ovoid surfaces, the straight linep1 = p∗1 has two intersection points withS if (p1 = p∗1, 0)
is inside the domain enclosed by the quasi-P slowness surface. Thisif condition is important
because it is possible that no roots among the six real roots correspond to the quasi-P wave;
see the dashed line in Fig. 1b, which corresponds to cusps. Since the origin is in the domain
enclosed byS, p∗1, can be taken small enough to guarantee that the straight linep1 = p∗1 has
six real intersection points with the slowness surface, among which two are on the quasi-P
slowness surfaceS. The six real roots can be sorted into ascending order; moreover, the
third and fourth roots correspond to the two intersection points with the quasi-P slowness
surface, denoted aspup

3 and pdn
3 .

BecauseS is strictly convex and closed, there are two extreme points at whichF = 0
and ∂F

∂p3
= 0; by the method of characteristics,

dx1

dt
= v1

g =
(

p1
∂F

∂p1
+ p3

∂F

∂p3

)−1
∂F

∂p1
,

(9)
dx3

dt
= v3

g =
(

p1
∂F

∂p1
+ p3

∂F

∂p3

)−1
∂F

∂p3
,

they correspond to the two horizontal rays (pointing to the positive and negativex1-
directions). To locate such points, we need two sets of intersection points (p∗1, pup

3 ) and
(p∗1, pdn

3 ), which can be computed withp∗1 chosen as positive and negative numbers near
zero, respectively.

Assuming that (p∗1, pup
3 ) and (p∗1, pdn

3 ) on the quasi-P slowness surfaceSare known, we
can find onSan extreme point (pm

1 , pm
3 ) which corresponds to the stationary point of function

p1 = f (p3) defined by the graph{(p1, p3) : p1 ≥ p∗1 > 0, pdn
3 ≤ p3 ≤ pup

3 , F(p1, p3) =
0}; see Fig. 2. Since the functionf is convex, its derivative is monotonic; therefore, a typical
nonlinear iterative solver can be used to compute the unique stationary point, such as the
Newton method. The above stationary point is also of critical importance in the adaptation of
upwind finite-difference schemes from numerical methods for Hamilton–Jacobi equations,
because in that setting it is called the sonic point and is needed to decide the upwinding
direction.



PARAXIAL EIKONAL SOLVERS 263

Once the two extreme points (p+1 , p+3 ) and (p−1 , p−3 ) corresponding to the two horizontal
rays are located, it is easy to see that allp1 ∈ ((1−1)p−1 , (1−1)p+1 ) give rise to down-
going and up-going quasi-P rays by utilizing different roots ofp3, where1 is the user-
specified paraxial parameter for depth direction marching. Forp1 ≤ (1−1)p−1 , we simply
set the paraxial HamiltonianH1(p1) = H((1−1)p−1 ); similar treatment is given top1 ≥
(1−1)p+1 .

Supposing that we have two extreme points (p+1 , p+3 ) and (p−1 , p−3 ), the ray tracing
equation says that the outward normals at these two extreme points correspond to the rays
which point to the horizontal directions. Knowing this, we can design a shooting method to
compute the travel time from a source point to a specific point in homogeneous anisotropic
media. Since the group angle is known, the goal is to find the corresponding slowness vector
to give the correct group angle. The following results.

ALGORITHM 1:
• Input: (xs

1, z
s
1), (x

o
1, z

o
1), (p

+
1 , p+3 ), and(p−1 , p−3 ).

• Set pa
1← p−1 and pb

1← p+1 .
• Compute:pc

1← 1
2(p

a
1+ pb

1).

• Compute: gcos← xo
1 − xs

1√
(xo

1−xs
1)

2+ (xo
3−xs

3)
2
.

• While pa
1 < pc

1 and pc
1 < pb

1, do
—root p3← all roots ofF(pc

1, p3) = 0.0.
—Sort the roots in ascending order:root p3← sort(root p3).
—Pick out the one for down-going qP wave:
∗ if F is sextic:pc

3← root p3(4).
∗ if F is quartic:pc

3← root p3(3).
—Compute the group velocity vector (v1

g, v
3
g) at (pc

1, pc
3) by Eqs. (9).

—Compute: gvel← v1
g√

(v1
g)

2+ (v3
g)

2
.

—If gvel ≥ gcos, thenpb
1← pc

1 and pc
1← 0.5(pa

1+ pb
1); else pa

1← pc
1 and pc

1←
0.5(pa

1+ pb
1).

• Compute travel time:t =
√
(xo

1 − xs
1)

2+ (xo
3 − xs

3)
2√

(v1
g)

2+ (v3
g)

2
.

Algorithm 1 is useful for initializing the travel time to start the finite-difference schemes.

4. ENO AND WENO FOR PARAXIAL EIKONAL EQUATIONS

Equation (7) is a nonlinear first-order PDE for travel timeτ . However, the travel time is
not unique: when the elastic parameters vary with position, in general many rays pass over
at least some points in the subsurface so that the travel-time field is multivalued [2]. One
choice of unique travel time for each subsurface point is theleast time(“first-arrival time”).
It turns out that for isotropic media this first-arrival travel-time field is theviscosity solution
of the eikonal equation [27]; we surmise that this is also true for anisotropic problems with
a convex slowness surface. Qian and Symes [36] proved that the Hamiltonian of the quasi-P
paraxial eikonal equation is concave, so its (unbounded) viscosity solution exists and is
unique [7, 16, 23, 26]; furthermore, upwind schemes can be used to compute this viscosity
solution successfully [8].

To compute the first-arrival travel-time field with a grid-based finite-difference scheme,
we derived a first-order upwind scheme from ray tracing rather than directly from the
eikonal equation; see the Appendix. We use this first-order scheme as a building block for
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designing high-order schemes. To increase the order of convergence, we employ higher order
essentially nonoscillatory and weighted ENO refinements. ENO schemes were introduced
by Osher and Sethian [30] and Osher and Shu [31] as a means for solving Hamilton–Jacobi
equations. WENO schemes were first proposed by Liu,et al. [28] as a means to overcome
the drawbacks of ENOs. Jiang and Peng [17] made further improvements and extensions
for Hamilton–Jacobi equations. Because WENO schemes are extensions of ENO schemes,
we present second-order ENO schemes first.

Given mesh sizes1x1,1x2, and1x3, we denote byτ n
m,k by the numerical approximation

of the viscosity solutionτ(xm
1 , xk

2, xn
3) of Eq. (7) at the grid point (xm

1 , xk
2, xn

3). Define the
backward (−) and forward (+) first-order difference quotient approximations of the left and
right derivatives ofτ(x1, x2, x3) at the location (xm

1 , xk
2, xn

3) with respect tox1 andx2 as

D±x1
τ n

m,k = ±
τ n

m±1,k − τ n
m,k

1x1
, D±x2

τ n
m,k = ±

τ n
m,k±1− τ n

m,k

1x2
. (10)

The second-order ENO refinements to∂τ
∂x1

[30] are

D±,2x1
τ n

m,k = D±x1
τ n

m,k ∓
1

2
1x1m

(
D±x1

D±x1
τ n

m,k, D−x1
D+x1

τ n
m,k

)
, (11)

with

m(x, y) = min(max(x, 0),max(y, 0))+max(min(x, 0),min(y, 0)). (12)

ENO refinements for∂τ
∂x2

are defined similarly.
So a second-order ENO Runge–Kutta scheme for Eq. (7) can be formulated as

τ
n+ 1

2
m,k = τ n

m,k +1xcfl
3 Ĥ1

(
D+,2x1

τ n
m,k, D−,2x1

τ n
m,k, D+,2x2

τ n
m,k, D−,2x2

τ n
m,k

)
,

τ n+1
m,k =

1

2

(
τ n

m,k + τ
n+ 1

2
m,k +1xcfl

3 Ĥ1

(
D+,2x1

τ
n+ 1

2
m,k , D−,2x1

τ
n+ 1

2
m,k , D+,2x2

τ
n+ 1

2
m,k , D−,2x2

τ
n+ 1

2
m,k

))
,

where the fluxĤ1 is defined by [31]

Ĥ1(u
+, u−, v+, v−) = extu∈I (u−,u+)extv∈I (v−,v+)H1(u, v). (13)

The function extu∈I (a,b) = maxa≤ u≤ b if a ≤ b, extu∈I (a,b) = minb≤u≤a else; I (a, b)=
[min(a, b),max(a, b)];1x3

cfl is the Courant–Friedrichs–Lewy (“CFL”) step,

1x3
cfl

max
p1,p2

√(
∂H1

∂p1

)2

+
(
∂H1

∂p2

)2
 ≤ 1x11x2√

1x1
2+1x2

2
, (14)

with the maximum taken over the relevant range ofp1 and p2. SinceH1 is concave [36],
Inequality (14) reduces to

1x3
cfl

 max{
(pe

1,p
e
2):0≤φ≤2π

} √(∂H1

∂p1

)2

+
(
∂H1

∂p2

)2
 ≤ 1x11x2√

1x1
2+1x2

2
, (15)

where(pe
1, pe

2) = ((1−1)pmax(φ) cosφ, (1−1)pmax(φ) sinφ).
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Using the concavity of the HamiltonianH1, the above flux functionĤ1 is not difficult
to compute as long as the “sonic point” (at which∂H1

∂p1
or ∂H1

∂p2
changes sign) is located. To

locate sonic points, we can use the algorithms for the extreme points explained above. If
the sonic point is atp1 = 0 or p2 = 0, which is true for the isotropic eikonal equation and
the eikonal equation for the transversely isotropic medium with a vertical symmetry axis,
we can simplify the above scheme,

τ
n+ 1

2
m,k = τ n

m,k +1xcfl
3 H1

((
∂̂τ

∂x1

)n

m,k

,

(
∂̂τ

∂x2

)n

m,k

)
, (16)

τ n+1
m,k =

1

2

(
τ n

m,k + τ
n+ 1

2
m,k +1xcfl

3 H1

((
∂̂τ

∂x1

)n+ 1
2

m,k

,

(
∂̂τ

∂x2

)n+ 1
2

m,k

))
, (17)

where

(
∂̂τ

∂x1

)n

m,k

= maxmod
(

max
(
D−,2x1

τ n
m, 0

)
,min

(
D+,2x1

τ n
m, 0

))
, (18)

(
∂̂τ

∂x2

)n

m,k

= maxmod
(

max
(
D−,2x2

τ n
m, 0

)
,min

(
D+,2x2

τ n
m, 0

))
, (19)

with maxmod returning the larger value in modulus; see [21, 35, 36].
In the upwind framework, second-order ENO schemes diminish total variation, hence

they have at least subsequences which converge to weak solutions [25, 45]. There is no
known convergence result for ENO schemes of orders higher than 2, even for smooth
solutions [45]. However, Jiang and Shu [18] proved that WENO schemes converge for
smooth solutions. The main advantage of WENO schemes is that they provide smooth
flux functions, so they are less sensitive to zeros of solutions and derivatives than ENO
schemes.

The WENO second-order schemes forD±x1
τm,k are [17]

D−W,2
x1

τm,k = 1

2

(
D+x1

τm−1,k + D+x1
τm,k

)− w−
2

(
D+x1

τm−2,k− 2D+x1
τm−1,k + D+x1

τm,k
)
, (20)

D+W,2
x1

τm,k = 1

2

(
D+x1

τm−1,k+D+x1
τm,k

)− w+
2

(
D+x1

τm+1,k− 2D+x1
τm,k+D+x1

τm−1,k
)
, (21)

where

w− = 1

1+ 2r 2−
, r− =

δ + (D−x1
D−x1

τm,k
)2

δ + (D−x1
D+x1

τm,k
)2 , (22)

w+ = 1

1+ 2r 2+
, r+ =

δ + (D+x1
D+x1

τm,k
)2

δ + (D−x1
D+x1

τm,k
)2 . (23)

In the denominators of Eqs. (22) and (23), the small positive numberδ is added to avoid
dividing by zero. The WENO second-order schemes forD±x2

τm,k are defined similarly.
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5. APPLICATION: INCLINED TI MEDIA

Although a general anisotropic solid has 21 independent elastic parameters, the trans-
versely isotropic (TI) solid has only five independent elastic parameters. But it has, nev-
ertheless, the essential anisotropic features we want to capture; therefore it is convenient
to use TI solids as models to illustrate how the approaches work. First we consider the
simplest case for TI solids, i.e., TI solids with vertical symmetry axes. Then we construct
inclined TI models by rotating VTI models [20]. Because the slowness surface equation for
the inclined TI model is a sextic polynomial equation which has the essential features of
a general sextic slowness surface and admits no explicit solutions, it is suitable to use the
model to test the proposed algorithms.

The elastic modulus matrix for transversely isotropic media with vertical symmetry axes
(VTI) has 5 independent components among 12 nonzero components [29, 47]. A closed-
form solution exists in this case for the eigenvalue problem (2). The quasi-P and quasi-SV
slowness surface for VTI can be represented as a quartic polynomial equation (where the
quasi-SH slowness surface is decoupled from the whole slowness surface),

G(q1,q3) ≡ aq4
1 + bq2

1q2
3 + cq4

3 + dq2
1 + eq2

3 + 1= 0, (24)

where

a ≡ a11a44,

b ≡ a11a33+ a2
44− (a13+ a44)

2,

c ≡ a33a44,

d ≡ −(a11+ a44),

e≡ −(a33+ a44).

In the above formulae, the Voigt recipe is assumed to simplify the elasticity tensorai jkl to
obtainai j [47].

Rotateoq1q2 axes by angleψ ,

q1 = t11p1+ t13p3, q3 = t31p1+ t33p3,

wheret11 = t33 = cosψ, t13 = −t31 = sinψ . Substituting the above relation into Eq. (24),
we have a quartic polynomial equation in variablesp1, p3,

F(p1, p3) ≡ w1 p4
1 + w2 p3

1 p3+ w3 p2
1 p2

3 + w4 p1 p3
3 + w5 p4

3

+w6 p2
1 + w7 p1 p3+ w8 p2

3 + w9 = 0, (25)

where

w1 ≡ at411+ bt211t
2
31+ ct431,

w2 ≡ 4at311t13+ 2b
(
t2
11t31t33+ t11t13t

2
31

)+ 4ct331t33,

w3 ≡ 6at211t
2
13+ b

(
t2
11t

2
33+ 4t11t13t31t33+ t2

13t
2
31

)+ 6ct2
31t

2
33,
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FIG. 3. The quasi-P slowness surface: unrotated (solid line) and after a rotation of 45◦ (dashed line).

w4 ≡ 4at11t
3
13+ 2b

(
t11t13t

2
33+ t2

13t31t33
)+ 4ct31t

3
33,

w5 ≡ at413+ bt213t
2
33+ ct433,

w6 ≡ dt211+ et231,

w7 ≡ 2dt11t13+ 2et31t33,

w8 ≡ dt213+ et233,

w9 ≡ 1.

The two partial derivatives are given by

∂F

∂p1
= 4w1 p3

1 + 3w2 p3 p2
1 + 2

(
w3 p2

3 + w6
)

p1+
(
w4 p2

3 + w7
)

p3,

∂F

∂p3
= 4w5 p3

3 + 3w4 p1 p2
3 + 2

(
w3 p2

1 + w8
)

p3+
(
w2 p2

1 + w7
)

p1.

Figure 3 shows an original TI quasi-P slowness surface with a vertical symmetry axis and
its rotated version.

6. NUMERICAL EXAMPLES

We have designed algorithms to be used for general anisotropic solids. In this section we
test these algorithms on the inclined TI solids. We compute the paraxial Hamiltonian by
using the idea explained above and solve the paraxial eikonal equation (7) by second-order
ENO and WENO schemes. All examples are assumed to be of constant density.
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In typical seismic exploration applications, the initial condition of the eikonal equation is
given as a point source; thus the solution of the corresponding eikonal equation is called the
fundamental solution with one-point singularity at the source [23]. Due to this singularity
of the travel-time field which leads to the contamination of global numerical accuracy, we
must use special techniques, such as the adaptive grid method [34, 35] or local uniform
mesh refinement [21], to initialize the travel time. However, here we assume a homogeneous
layer near the source (for which it is supposed to be easy to assign an accurate travel time)
and start the finite-difference scheme some distance away from the source; namely, we use
Algorithm 1 to compute the group velocity and directly initialize the travel time at every
grid point on a surface away from the source. To solve the polynomial equation, we use
MATLAB toolboxes; to locate the extreme points, we use Newton methods.

The example occupies the rectangle{−0.5 km≤ x1≤ 0.5 km, 0≤ x3≤ 1 km}; the source
is located atx1 = 0.0 km,x3 = 0.0 km. The four elastic parameters of Zinc [29, p. 280] are
a11 = 15.90,a33 = 6.21,a13 = 4.82, anda44 = 4.00; they can be transformed into Thom-
sen’s parameters [47]:α0 = 2.492 km/s,β0 = 2.00 km/s,ε = 0.7802, andδ = 2.6562.

According to the notion of Thomsen’s weak anisotropy, these parameters show that the
anisotropy is strong rather than weak. Therefore, this model will serve as an assay for the
algorithms developed here and will be examined systematically. To do this, we will apply
both ENO and WENO second-order schemes to both unrotated and rotated models.

To obtain an ITI model from the VTI model, the rotation angleψ is 36 degrees. The
initial data depth is atx3 = 0.04 km; that is, the initial data for the finite-difference scheme
are given at this depth by Algorithm 1. The paraxial parameter1 is taken as 0.01. In
Tables I–IV Abs.Err is the maximum absolute error and Rel.Err is the maximum relative
error, both measured at bottomx3 = 1 km.α is the estimated convergence order, where we
use the travel time from Algorithm 1 as the exact solution to calibrate the travel time from
the finite-difference scheme. The mathematical definitions of these three quantities are

Abs.Err(τ,1x1) = max
∣∣τana− τ1x1

f d

∣∣,
Rel.Err(τ,1x1) =

max
∣∣τana− τ1x1

f d

∣∣
max|τana| ,

and

α = 1

log 2
log

(
Rel.Err(τ, 21x1)

Rel.Err(τ,1x1)

)
,

whereτana denotes the travel time by Algorithm 1 andτfd the travel time from the finite-
difference scheme.

The results for VTI models are shown in Tables I and II. Table I shows that the convergence
orderα of the ENO scheme is going to 2 as1x1 goes to zero, while Table II shows that on
average the second-order WENO scheme has a convergence order greater than 2.

Tables III and IV show the results for ITI models. The second-order ENO scheme does
converge as a second-order scheme and it has stable error behaviors. The WENO second-
order scheme seems to converge to a third-order scheme, which is consistent with the
original construction of the WENO schemes [17].

Figure 4a shows the slowness surface for Zinc with a vertical symmetry axis, and
Fig. 4b shows the slowness surface after it has been rotated 30 degrees. To generate
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TABLE I

Convergence Order of ENO: VTI Model

1x1 Abs.Err(τ,1x1)(s) Rel.Err(τ,1x1) α

0.04 2.3589e-04 5.7583e-04
0.02 1.0056e-04 2.4548e-04 1.2301
0.01 3.1957e-05 7.8011e-05 1.6539
0.005 9.1562e-06 2.2351e-05 1.8033
0.0025 2.4494e-06 5.9793e-06 1.9023

TABLE II

Convergence Order of WENO: VTI Model

1x1 Abs.Err(τ,1x1)(s) Rel.Err(τ,1x1) α

0.04 1.9809e-04 4.8553e-04
0.02 7.0328e-06 1.7168e-05 4.8159
0.01 2.7634e-06 6.7457e-06 1.3477
0.005 5.1313e-07 1.2526e-06 2.4290
0.0025 8.2154e-08 2.0055e-07 2.6429

TABLE III

Convergence Order of ENO: ITI Model

1x1 Abs.Err(τ,1x1)(s) Rel.Err(τ,1x1) α

0.04 0.0022 0.0049
0.02 6.8005e-04 0.0015 1.6938
0.01 1.8129e-04 4.0871e-04 1.9073
0.005 4.5921e-05 1.0353e-04 1.9811
0.0025 1.1749e-05 2.6489e-05 1.9666

TABLE IV

Convergence Order of WENO: ITI Model

1x1 Abs.Err(τ,1x1)(s) Rel.Err(τ,1x1) α

0.04 0.0017 0.0039
0.02 4.4201e-04 9.9652e-04 1.9434
0.01 8.1029e-05 1.8268e-04 2.4476
0.005 1.0109e-05 2.2792e-05 3.0028
0.0025 1.2716e-06 2.8669e-06 2.9909
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FIG. 4. The 2-D homogeneous Zinc model. (a) The original VTI slowness surface. (b) The inclined slowness
surface with a rotation angle of 30◦. The two slowness surfaces are generated by sampling an interval ofp1 in
(p−1 , p+1 ).
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FIG. 5. The 2-D homogeneous inclined (36◦) TI Zinc model with a second-order ENO scheme. The source
is located atx1 = x3 = 0.0; the initial depth is 0.02 km and1x1 = 1x3 = 0.02 km. (a) Travel-time contours by
the paraxial eikonal solver with the ENO scheme. (b) The travel-time calibration atx3 = 1 km.
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FIG. 6. The 2-D homogeneous inclined (36◦) TI Zinc model with a second-order WENO scheme. The source
is located atx1 = x3 = 0.0; the initial depth is 0.02 km and1x1 = 1x3 = 0.02 km. (a) Travel-time contours by
the paraxial eikonal solver with the WENO scheme. (b) The travel-time calibration atx3 = 1 km.
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these figures, the extreme points are located by the Newton method, and then a number of
samplings are taken forp1 in the interval (p−1 , p+1 ).

Figures 5 and 6 show the travel-time contours and calibrations for the two schemes. The
calibrations show that the schemes work very well.

7. CONCLUSIONS

We have formulated for the heterogeneous anisotropic solids the paraxial eikonal equation
satisfied by the first-arrival travel time associated with qP wave propagation. We have
presented complete implementation details for computing the paraxial Hamiltonian and
illustrated its application to the transversely isotropic solid. We have introduced second-
order ENO/WENO schemes by using a first-order scheme presented in the Appendix as a
building block. Higher order schemes may be constructed by further use of this method [36].
These schemes solve the qP paraxial eikonal equation inO(N) floating point operations
(whereN is the number of grid points). Numerical results have shown that our scheme
is accurate and efficient; for numerical results on complex models and models with both
lateral and vertical variations, see [36]. The chief shortcoming is that the paraxial assumption
permits us to compute travel times along down-going rays only; for example, we do not
compute the overturning wavefronts. However, the paraxial formulation does provide a
natural framework for performing down-and-out and postsweeping iterations [10, 20] to
obtain the full aperture anisotropic travel-time field [37]. Further improvements can be made
by implementing a fully adaptive eikonal solver based on a posteriori error estimates for
general numerical methods for Hamilton–Jacobi equations [1].

The scheme can be used in many geoscience applications requiring modeling of aniso-
tropic wave propagation, such as 3-D Kirchhoff migration and modeling, tomography, and
3-D controlled illumination modeling.

APPENDIX: A NEW DERIVATION OF A FIRST-ORDER GODUNOV SCHEME

In this appendix, we derive a first-order scheme from ray tracing rather than directly
from the eikonal equation. Nonetheless, the end result will be recognizable as a difference
approximation to the eikonal equation. We consider the two-dimensional case to illustrate
the idea, which means all out-of-plane components vanish in the equations formulated for
3-D media and all rays stay in thex1x3 plane.

The first-order finite-difference approximation to the qP eikonal equation rests on several
approximations; that is, we may approximate locally near a grid point:

1. the group velocityvg by a constant;
2. the rays by straight line segments;
3. the travel time by piecewise linear functions ofx1 with nodes at the grid point.

Given a Cartesian grid (m1x1, n1x3) in two-dimensional space, let

τ n
m ≈ τ(m1x1, n1x3) (A.1)

be the grid function approximating the travel time. Near (m1x1, n1x3), we define the
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approximation of derivativeτx1 at (x1, n1x3) by

τ n
x1
≈
 D−x1

τ n
m ≡ τ n

m− τ n
m−1

1x1
for (m− 1)1x1 < x1 < m1x1,

D+x1
τ n

m ≡ τ n
m+1− τ n

m

1x1
for m1x1 < x1 < (m+ 1)1x1.

(A.2)

The characteristics (rays) of eikonal equation (4) are down-going, so they can be param-
eterized byx3 = z and satisfy (in the two-dimensional case)

dx1

dx3
= −∂H

∂p1
, (A.3)

dτ

dx3
= H − p1

∂H

∂p1
. (A.4)

The ray group velocity is

vg =

√(
∂H
∂p1

)2
+ 1

H(p1)− ∂H
∂p1

p1
. (A.5)

After discretization, the group velocity is given by

v±g =

√(
∂H
∂p1

(
D±x1

τ n
m

))2
+ 1

H
(
D±x1

τ n
m

)− ∂H
∂p1

(
D±x1

τ n
m

)
D±x1

τ n
m

. (A.6)

A ray segment passing through (m1x1, (n+ 1)1x3)and meeting the linex3 = n1x3 at x1

has length

L = 1x3

√
1+

(
x1−m1x1

1x3

)2

, (A.7)

so that the time predicted at (m1x1, (n+ 1)1x3) under the foregoing assumption is

τ n+1
m ≈

 τ
n
m + (x1−m1x1)D+x1

τ n
m + L

v+g
for m1x1 ≤ x1 ≤ (m+ 1)1x1,

τ n
m + (x1−m1x1)D−x1

τ n
m + L

v−g
for (m− 1)1x1 ≤ x1 ≤ m1x1.

(A.8)

Finally, the ray velocity vector should obey the ray equation (A.3),

−x1−m1x1

1x3
= dx1

dx3
≈
−

∂H
∂p1

(
D+x1

τ n
m

)
for m1x1 ≤ x1 ≤ (m+ 1)1x1,

− ∂H
∂p1

(
D−x1

τ n
m

)
for (m− 1)1x1 ≤ x1 ≤ m1x1,

(A.9)

i.e.,

x1−m1x1 ≈
1x3

∂H
∂p1

(
D+x1

τ n
m

)
for m1x1 ≤ x1 ≤ (m+ 1)1x1,

1x3
∂H
∂p1

(
D−x1

τ n
m

)
for (m− 1)1x1 ≤ x1 ≤ m1x1,

(A.10)
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Substituting expression (A.10) into (A.8) and carrying out the algebra, we arrive at

τ n+1
m =

 τ
n
m +1x3H

(
D+x1

τ n
m

)
for m1x1 ≤ x1 ≤ (m+ 1)1x1,

τ n
m +1x3H

(
D−x1

τ n
m

)
for (m− 1)1x1 ≤ x1 ≤ m1x1,

(A.11)

wherex1 is chosen to satisfy (A.9) if possible.
Next we have to examine the significance of the condition switching the branches of

(A.11). If m1x1 ≤ x1 ≤ (m+ 1)1x1, i.e., the ray slope is nonpositive, it follows from
(A.9) that

∂H

∂p1

(
D+x1

τ n
m

) ≥ 0. (A.12)

Similarly, the second branch occurs when

∂H

∂p1

(
D−x1

τ n
m

) ≤ 0. (A.13)

When neither of these occurs, i.e.,

∂H

∂p1

(
D+x1

τ n
m

) ≤ 0≤ ∂H

∂p1

(
D−x1

τ n
m

)
, (A.14)

rays fan away from (m1x1, n1x3); that is, this point is a center of rarefaction. Then to good
approximation, the ray entering (m1x1, (n+ 1)1x3) is vertical; i.e., along it

∂H

∂p1
= 0, (A.15)

which corresponds to a sonic point. Finally, if both conditions are satisfied, i.e.,

∂H

∂p1

(
D+x1

τ n
m

) ≥ 0≥ ∂H

∂p1

(
D−x1

τ n
m

)
, (A.16)

then two rays converge on (m1x1, (n+ 1)1x3), and we should select the lesser of the two
times provided by (A.11).

Because the Hamiltonian H is concave, all four of these options can be combined in the
simple formula

τ n+1
m = τ n

m +1x3HG
(
D−x1

τ n
m, D+x1

τ n
m

)
, (A.17)

where the fluxHG is defined by

HG(u−, u+) =


max
u−≤u≤u+

H(u), if u− ≤ u+;
min

u+≤u≤u−
H(u), else.

(A.18)

The scheme just proposed is identical to the so-called Godunov first-order scheme, and
therefore it is a monotone scheme; see Osher and Sethian [30] and Osher and Shu [31].

There remains one further detail to take care of: The approximate ray might meet
x3 = n1x3 outsidethe interval(m− 1)1x1 ≤ x1 ≤ (m+ 1)1x1. The difference scheme
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(A.17) would necessarily become unstable, as the numerical domain of dependence of
(m1x1, (n+ 1)1x3) (namely, the three points onx3 = n1x3 in the scheme (A.17)) would
no longer contain in its convex hull the continuum domain of dependence{x}. In order to
be certain this Courant-Friedrichs–Lewy (“CFL”) criterion is satisfied, we limit the slope
of the ray:

max

{∣∣∣∣∂H

∂p1

(
D+x1

τ n
m

)∣∣∣∣, ∣∣∣∣∂H

∂p1

(
D−x1

τ n
m

)∣∣∣∣} ≤ 1x1

1x3
. (A.19)

By the definition ofH1, for given1 > 0, there existsp′max such that [34]

H1(p1) =
{

H(p1), if p1 ≤ (1−1)p′max,

H((1−1)p′max), else,
(A.20)

and ∣∣∣∣∂H1

∂p1
(p1)

∣∣∣∣ ≤ O

(
1

1

)
. (A.21)

Therefore, we need to choose just1 > 0 such that

1x1

1x3
≥ O

(
1

1

)
. (A.22)

Finally, the resulting difference scheme is

τ n+1
m = τ n

m +1x3HG
1

(
D−x1

τ n
m, D+x1

τ n
m

)
, (A.23)

which is consistent with theparaxial eikonal equation

p3 = H1(p1). (A.24)

Solutions of (A.24) are identical to solutions of the eikonal equation at points whose
associated rays make an angle≤ψmax

g = arctan(1x1
1x3
) with the vertical (x1 = constant)

throughout their length. (For the point source problem, the associated ray is the first-arriving
ray connecting the subsurface point with the source point.) Thus with this paraxial limitation,
the scheme is suitable for computing the travel time ofdown-going ray fans.
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